Contents

Preface ... 5
 Document conventions... 5
 Text formatting conventions.. 5
 Command syntax conventions.. 5
 Notes, cautions, and warnings.. 6
Brocade resources... 6
Contacting Brocade Technical Support.. 6
 Brocade customers.. 6
 Brocade OEM customers.. 7
Document feedback.. 7

About This Guide.. 9

RIPng Configuration.. 11
 RIPng overview... 11
 Supported standards.. 11
 Configuring RIPng... 11
 Enabling forwarding on R1 and R2... 12
 Enabling RIPng on an interface.. 12
 Advertising connected networks.. 13
 Confirming visibility of remote networks... 14

Router-Level Configuration Commands.. 17
 monitor protocol ripng disable events.. 18
 monitor protocol ripng disable packet... 19
 monitor protocol ripng disable rib... 20
 monitor protocol ripng enable events.. 21
 monitor protocol ripng enable packet.. 22
 monitor protocol ripng enable rib... 23
 show monitoring protocols ripng... 24
 protocols ripng aggregate-address <ipv6net>... 25
 protocols ripng default-information originate... 26
 protocols ripng default-metric <metric>... 27
 protocols ripng log.. 28
 protocols ripng log packet... 29
 protocols ripng passive-interface <interface-name>... 30
 protocols ripng route <ipv6net>... 31
 protocols ripng timers garbage-collection <seconds>... 32
 protocols ripng timers update <seconds>.. 33
 reset ipv6 ripng route... 34
 show ipv6 route ripng.. 35
 show ipv6 ripng.. 36

Route Redistribution Commands.. 41
 protocols ripng redistribute bgp... 42
 protocols ripng redistribute connected.. 43
 protocols ripng redistribute kernel... 44
Preface

- Document conventions..5
- Brocade resources..6
- Contacting Brocade Technical Support..6
- Document feedback..7

Document conventions
The document conventions describe text formatting conventions, command syntax conventions, and important notice formats used in Brocade technical documentation.

Text formatting conventions
Text formatting conventions such as boldface, italic, or Courier font may be used in the flow of the text to highlight specific words or phrases.

<table>
<thead>
<tr>
<th>Format</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>bold</td>
<td>Identifies command names</td>
</tr>
<tr>
<td></td>
<td>Identifies keywords and operands</td>
</tr>
<tr>
<td></td>
<td>Identifies the names of user-manipulated GUI elements</td>
</tr>
<tr>
<td></td>
<td>Identifies text to enter at the GUI</td>
</tr>
<tr>
<td>italic</td>
<td>Identifies emphasis</td>
</tr>
<tr>
<td></td>
<td>Identifies variables</td>
</tr>
<tr>
<td></td>
<td>Identifies document titles</td>
</tr>
<tr>
<td>Courier</td>
<td>Identifies CLI output</td>
</tr>
<tr>
<td></td>
<td>Identifies command syntax examples</td>
</tr>
</tbody>
</table>

Command syntax conventions
Bold and italic text identify command syntax components. Delimiters and operators define groupings of parameters and their logical relationships.

<table>
<thead>
<tr>
<th>Convention</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>bold</td>
<td>Identifies command names, keywords, and command options.</td>
</tr>
<tr>
<td>italic</td>
<td>Identifies a variable.</td>
</tr>
<tr>
<td>value</td>
<td>In Fibre Channel products, a fixed value provided as input to a command option is printed in plain text, for example, --show WWN.</td>
</tr>
<tr>
<td>[]</td>
<td>Syntax components displayed within square brackets are optional.</td>
</tr>
<tr>
<td>{ x</td>
<td>y</td>
</tr>
<tr>
<td>x</td>
<td>y</td>
</tr>
<tr>
<td>< ></td>
<td>A vertical bar separates mutually exclusive elements.</td>
</tr>
<tr>
<td></td>
<td>Nonprinting characters, for example, passwords, are enclosed in angle brackets.</td>
</tr>
</tbody>
</table>
Notes, cautions, and warnings

Notes, cautions, and warning statements may be used in this document. They are listed in the order of increasing severity of potential hazards.

NOTE
A Note provides a tip, guidance, or advice, emphasizes important information, or provides a reference to related information.

ATTENTION
An Attention statement indicates a stronger note, for example, to alert you when traffic might be interrupted or the device might reboot.

CAUTION
A Caution statement alerts you to situations that can be potentially hazardous to you or cause damage to hardware, firmware, software, or data.

DANGER
A Danger statement indicates conditions or situations that can be potentially lethal or extremely hazardous to you. Safety labels are also attached directly to products to warn of these conditions or situations.

Brocade resources

Visit the Brocade website to locate related documentation for your product and additional Brocade resources.

You can download additional publications supporting your product at www.brocade.com. Select the Brocade Products tab to locate your product, then click the Brocade product name or image to open the individual product page. The user manuals are available in the resources module at the bottom of the page under the Documentation category.

To get up-to-the-minute information on Brocade products and resources, go to MyBrocade. You can register at no cost to obtain a user ID and password.

Release notes are available on MyBrocade under Product Downloads.

White papers, online demonstrations, and data sheets are available through the Brocade website.

Contacting Brocade Technical Support

As a Brocade customer, you can contact Brocade Technical Support 24x7 online, by telephone, or by e-mail. Brocade OEM customers contact their OEM/Solutions provider.

Brocade customers

For product support information and the latest information on contacting the Technical Assistance Center, go to http://www.brocade.com/services-support/index.html.

If you have purchased Brocade product support directly from Brocade, use one of the following methods to contact the Brocade Technical Assistance Center 24x7.
Preferred method of contact for non-urgent issues:
- My Cases through MyBrocade
- Software downloads and licensing tools
- Knowledge Base

Required for Sev 1-Critical and Sev 2-High issues:
- Continental US: 1-800-752-8061
- Europe, Middle East, Africa, and Asia Pacific: +800-AT FIBREE (+800 28 34 27 33)
- For areas unable to access toll free number: +1-408-333-6061
- Toll-free numbers are available in many countries.

support@brocade.com

Please include:
- Problem summary
- Serial number
- Installation details
- Environment description

Brocade OEM customers

If you have purchased Brocade product support from a Brocade OEM/Solution Provider, contact your OEM/Solution Provider for all of your product support needs.

- OEM/Solution Providers are trained and certified by Brocade to support Brocade® products.
- Brocade provides backline support for issues that cannot be resolved by the OEM/Solution Provider.
- Brocade Supplemental Support augments your existing OEM support contract, providing direct access to Brocade expertise. For more information, contact Brocade or your OEM.
- For questions regarding service levels and response times, contact your OEM/Solution Provider.

Document feedback

To send feedback and report errors in the documentation you can use the feedback form posted with the document or you can e-mail the documentation team.

Quality is our first concern at Brocade and we have made every effort to ensure the accuracy and completeness of this document. However, if you find an error or an omission, or you think that a topic needs further development, we want to hear from you. You can provide feedback in two ways:

- Through the online feedback form in the HTML documents posted on www.brocade.com.
- By sending your feedback to documentation@brocade.com.

Provide the publication title, part number, and as much detail as possible, including the topic heading and page number if applicable, as well as your suggestions for improvement.
About This Guide

This guide describes how to configure Routing Information Protocol next generation (RIPng) on the Brocade 5600 vRouter (referred to as a virtual router, vRouter, or router in the guide).
RIPng is a dynamic routing protocol that is suitable for small, homogenous IPv6 networks. It is classified as an interior gateway protocol (IGP) and employs the distance-vector routing algorithm. RIPng determines the best path by counting the hops to the destination. The maximum hop count is 15 (16 is considered an infinite distance), making RIPng less suitable for large networks. RIPng is an extension of RIP version 2 for IPv6.

The Brocade vRouter implementation of RIPng complies with the following standards:

- RFC 2080: RIPng for IPv6
- RFC 2081: RIPng Protocol Applicability Statement

This section presents the following topics:

- Enable forwarding on R1 and R2
- Enable RIPng on an interface
- Advertise connected networks
- Confirm visibility of remote networks

This section presents an example configuration of RIPng. The configuration example is based on the reference diagram in the following figure. This example shows the configuration of the nodes by using dynamic IPv6 routing with RIPng to enable R3 and R4 to communicate through R1 and R2.
Enabling forwarding on R1 and R2

For R1 to pass data between the dp0p1p1 and dp0p1p3 interfaces and R2 to pass data between the dp0p1p1 and dp0p1p2 interfaces, R1 and R2 must be configured to enable forwarding. To enable forwarding on R1, perform the following step in configuration mode.

TABLE 1 Enabling forwarding on R1

<table>
<thead>
<tr>
<th>Step</th>
<th>Command</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enable forwarding on R1.</td>
<td>vyatta@R1# delete system ipv6 disable-forwarding</td>
</tr>
<tr>
<td>Commit the change.</td>
<td>vyatta@R1# commit</td>
</tr>
</tbody>
</table>

To enable forwarding on R2, perform the following steps in configuration mode.

<table>
<thead>
<tr>
<th>Step</th>
<th>Command</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enable forwarding on R2.</td>
<td>vyatta@R2# delete system ipv6 disable-forwarding</td>
</tr>
<tr>
<td>Commit the change.</td>
<td>vyatta@R2# commit</td>
</tr>
</tbody>
</table>

Enabling RIPng on an interface

To allow dynamic routing by using RIPng, RIPng must be enabled on the interfaces that are to use it. To enable RIPng on R1, perform the following steps in configuration mode.
TABLE 2 Enable RIPng on R1

<table>
<thead>
<tr>
<th>Step</th>
<th>Command</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enable RIPng on dp0p1p1.</td>
<td>vyatta@R1# set interfaces dataplane dp0p1p1 ipv6 ripng enable</td>
</tr>
<tr>
<td>Enable RIPng on dp0p1p3.</td>
<td>vyatta@R1# set interfaces dataplane dp0p1p3 ipv6 ripng enable</td>
</tr>
<tr>
<td>Commit the change.</td>
<td>vyatta@R1# commit</td>
</tr>
<tr>
<td>Change to operational mode.</td>
<td>vyatta@R1# exit, vyatta@R1:-$</td>
</tr>
<tr>
<td>Verify the status of RIPng.</td>
<td>vyatta@R1:-$ show ipv6 ripng status</td>
</tr>
<tr>
<td></td>
<td>Routing Protocol is "RIPng"</td>
</tr>
<tr>
<td></td>
<td>Sending updates every 30 seconds with +/-50%, next due in 4 seconds</td>
</tr>
<tr>
<td></td>
<td>Timeout after 180 seconds, garbage collect after 120 seconds</td>
</tr>
<tr>
<td></td>
<td>Outgoing update filter list for all interface is not set</td>
</tr>
<tr>
<td></td>
<td>Incoming update filter list for all interface is not set</td>
</tr>
<tr>
<td></td>
<td>Default redistribution metric is 1</td>
</tr>
<tr>
<td></td>
<td>Redistributing:</td>
</tr>
<tr>
<td></td>
<td>Interface</td>
</tr>
<tr>
<td></td>
<td>dp0p1p1</td>
</tr>
<tr>
<td></td>
<td>dp0p1p2</td>
</tr>
<tr>
<td>Display information for RIPng interfaces.</td>
<td>vyatta@R1:-$ show ipv6 ripng interface</td>
</tr>
<tr>
<td></td>
<td>dp0p1p1 is up, line protocol is up</td>
</tr>
<tr>
<td></td>
<td>Routing Protocol: RIPng</td>
</tr>
<tr>
<td></td>
<td>Passive interface: Disabled</td>
</tr>
<tr>
<td></td>
<td>Split horizon: Enabled with Poisoned Reversed</td>
</tr>
<tr>
<td></td>
<td>IPv6 interface address:</td>
</tr>
<tr>
<td></td>
<td>fe80::5054:ff:fe8b:1/64</td>
</tr>
<tr>
<td></td>
<td>dp0p1p2 is up, line protocol is up</td>
</tr>
<tr>
<td></td>
<td>Routing Protocol: RIPng</td>
</tr>
<tr>
<td></td>
<td>Passive interface: Disabled</td>
</tr>
<tr>
<td></td>
<td>Split horizon: Enabled with Poisoned Reversed</td>
</tr>
<tr>
<td></td>
<td>IPv6 interface address:</td>
</tr>
<tr>
<td></td>
<td>fe80::5054:ff:fe98:2/64</td>
</tr>
</tbody>
</table>

Advertising connected networks

The `redistribute` command is then used to advertise the connected networks. To advertise connected networks on R1, perform the following steps in configuration mode.

TABLE 3 Advertising connected networks on R1

<table>
<thead>
<tr>
<th>Step</th>
<th>Command</th>
</tr>
</thead>
<tbody>
<tr>
<td>Advertise connected networks through RIPng.</td>
<td>vyatta@R1# set protocols ripng redistribute connected</td>
</tr>
<tr>
<td>Commit the change.</td>
<td>vyatta@R1# commit</td>
</tr>
</tbody>
</table>
TABLE 3 Advertising connected networks on R1 (continued)

<table>
<thead>
<tr>
<th>Step</th>
<th>Command</th>
</tr>
</thead>
<tbody>
<tr>
<td>Verify the redistribution.</td>
<td>vyatta@R1:~$ show ipv6 ripng status</td>
</tr>
<tr>
<td></td>
<td>Routing Protocol is "RIPng"</td>
</tr>
<tr>
<td></td>
<td>Sending updates every 30 seconds with +/‐50%, next due in 4 seconds</td>
</tr>
<tr>
<td></td>
<td>Timeout after 180 seconds, garbage collect after 120 seconds</td>
</tr>
<tr>
<td></td>
<td>Outgoing update filter list for all interface is not set</td>
</tr>
<tr>
<td></td>
<td>Incoming update filter list for all interface is not set</td>
</tr>
<tr>
<td></td>
<td>Default redistribution metric is 1</td>
</tr>
<tr>
<td></td>
<td>Redistributing: connected</td>
</tr>
<tr>
<td></td>
<td>Interface dp0p1p1</td>
</tr>
<tr>
<td></td>
<td>dp0p1p2</td>
</tr>
</tbody>
</table>

Confirming visibility of remote networks

After enabling RIPng on the other interfaces of R2, R3, and R4 and advertising connected networks on R2, check the routing table of R4 to verify that it has learned the network. To confirm visibility of remote networks on R4, perform the following step in operational mode.

TABLE 4 Confirming visibility of remote networks on R4

<table>
<thead>
<tr>
<th>Step</th>
<th>Command</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trace the route from R2 to R4.</td>
<td>vyatta@R4:~$ show ipv6 route</td>
</tr>
<tr>
<td></td>
<td>IPv6 Routing Table</td>
</tr>
<tr>
<td></td>
<td>Codes: K - kernel route, C - connected, S - static, R - RIP, O - OSPF,</td>
</tr>
<tr>
<td></td>
<td>IA - OSPF inter area, E1 - OSPF external type 1, E2 - OSPF external</td>
</tr>
<tr>
<td></td>
<td>type 1, BGP</td>
</tr>
<tr>
<td></td>
<td>> - selected route, * - FIB route, p - stale info</td>
</tr>
<tr>
<td></td>
<td>Timers: Uptime</td>
</tr>
<tr>
<td></td>
<td>S>* ::/0 [1/0] via 2001:db8:1::1, dp0s1</td>
</tr>
<tr>
<td></td>
<td>C>* ::/128 is directly connected, lo</td>
</tr>
<tr>
<td></td>
<td>C>* 2001:db8:1::/64 is directly connected, dp0s1</td>
</tr>
<tr>
<td></td>
<td>R>* 2001:db8:2::/64 [120/2] via fe80::20c: 29ff:fed6:816c, dp0s1, 00:43:00</td>
</tr>
<tr>
<td></td>
<td>R>* 2001:db8:3::/64 [120/3] via fe80::20c: 29ff:fed6:816c, dp0s1, 00:00:03</td>
</tr>
<tr>
<td></td>
<td>C>* fe80::/64 is directly connected, dp0s1</td>
</tr>
</tbody>
</table>

The R in the first column indicates that two routes have been learned from RIPng. Because a route now exists for 2001:db8:3::/64, R3 can be pinged. To confirm connectivity, perform the following steps in operational mode.

TABLE 5 Confirming connectivity between R4 and R3

<table>
<thead>
<tr>
<th>Step</th>
<th>Command</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ping R3 from R4.</td>
<td>vyatta@R4:~$ ping 2001:db8:3::3</td>
</tr>
<tr>
<td></td>
<td>PING 2001:db8:3::3(2001:db8:3::3) 56 data bytes</td>
</tr>
<tr>
<td></td>
<td>64 bytes from 2001:db8:3::3: icmp_seq=1 ttl=62 time=5.98 ms</td>
</tr>
<tr>
<td></td>
<td>64 bytes from 2001:db8:3::3: icmp_seq=2 ttl=62 time=0.603 ms</td>
</tr>
</tbody>
</table>
TABLE 5 Confirming connectivity between R4 and R3 (continued)

<table>
<thead>
<tr>
<th>Step</th>
<th>Command</th>
</tr>
</thead>
</table>
| ^C | --- 2001:db8:3::3 ping statistics ---
 | 2 packets transmitted, 2 received, 0% packet loss, time 1011ms
 | rtt min/avg/max/mdev = 0.603/3.294/5.986/2.692 ms |
| | Display the RIPng status. |

```
vtya4@R4:~$ show ipv6 ripng  
Codes:  R - RIP, Rc - RIP connected, Rs - RIP static, Ra - RIP aggregated,  
       Rcx - RIP connect suppressed, Rsx - RIP static suppressed,  
       K - Kernel, C - Connected, S - Static, O - OSPF, I - IS-IS, B - BGP  

                         Network                  Next Hop                  If     Met  
  Tag Time                Tag Time                  If     Met  
  C 2001:db8:1::/64      ::                        dp0p1p1   1   0  
  R 2001:db8:2::/64      2001:db8:1::1           dp0p1p1   1   0  
  R 2001:db8:3::/64      2001:db8:1::1           dp0p1p1   1   0  
```
Router-Level Configuration Commands

- monitor protocol ripng disable events ... 18
- monitor protocol ripng disable packet ... 19
- monitor protocol ripng disable rib ... 20
- monitor protocol ripng enable events ... 21
- monitor protocol ripng enable packet ... 22
- monitor protocol ripng enable rib ... 23
- show monitoring protocols ripng .. 24
- protocols ripng aggregate-address <ipv6net> .. 25
- protocols ripng default-information originate ... 26
- protocols ripng default-metric <metric> .. 27
- protocols ripng log .. 28
- protocols ripng log packet ... 30
- protocols ripng passive-interface <interface-name> .. 31
- protocols ripng route <ipv6net> ... 32
- protocols ripng timers garbage-collection <seconds> 33
- protocols ripng timers timeout <seconds> ... 34
- protocols ripng timers update <seconds> ... 35
- reset ipv6 ripng route ... 36
- show ipv6 route ripng .. 37
- show ipv6 ripng ... 38
monitor protocol ripng disable events

Disables the generation of debug messages that are related to RIPng events.

Syntax

```
monitor protocol ripng disable events
```

Modes

Operational mode

Usage Guidelines

Use this command to disable the generation of debug (trace-level) messages that are related to RIPng events.
monitor protocol ripng disable packet

Disables the generation of debug messages that are related to all RIPng packet types.

Syntax

```
monitor protocol ripng disable packet [ recv | send ]
```

Parameters

- **recv**
 - Disables debugging of all received packets.
- **send**
 - Disables debugging of all sent packets.

Modes

Operational mode

Usage Guidelines

Use this command to disable the generation of debug (trace-level) messages that are related to RIPng packet types.
monitor protocol ripng disable rib

Disables the generation of debug messages that are related to the RIPng RIB.

Syntax

 monitor protocol ripng disable rib

Command Default

Debug messages are disabled for actions that are related to the RIPng RIB.

Modes

Operational mode

Usage Guidelines

Use this command to disable the generation of debug (trace-level) messages that are related to the RIPng RIB.
monitor protocol ripng enable events
Enables the generation of debug messages that are related to RIPng events.

Syntax
monitor protocol ripng enable events

Modes
Operational mode

Usage Guidelines
Use this command to enable the generation of debug (trace-level) messages that are related to RIPng events.
monitor protocol ripng enable packet

Enables the generation of debug messages that are related to all RIPng packet types.

Syntax

```
monitor protocol ripng enable packet [ recv | send ]
```

Parameters

- `recv`
 Enables debugging of all received packets.
- `send`
 Enables debugging of all sent packets.

Modes

Operational mode

Usage Guidelines

Use this command to enable the generation of debug (trace-level) messages that are related to all RIPng packet types.
monitor protocol ripng enable rib

Enables the generation of debug messages that are related to the RIPng RIB.

Syntax

```
monitor protocol ripng enable rib
```

Command Default

Debug messages are generated for actions that are related to the RIPng RIB.

Modes

- Operational mode

Usage Guidelines

Use this command to enable the generation of debug (trace-level) messages that are related to the RIPng RIB.
show monitoring protocols ripng
 Displays RIPng protocol debugging flags.

Syntax
 show monitoring protocols ripng

Modes
 Operational mode

Usage Guidelines
 Use this command to display how debugging is set for RIPng.
protocols ripng aggregate-address <ipv6net>
 Specifies an aggregate RIPng route announcement.

Syntax
 set protocols ripng aggregate-address ipv6net
 delete protocols ripng aggregate-address ipv6net
 show protocols ripng aggregate-address [ipv6net]

Parameters
 ipv6net
 An IPv6 network from which routes are to aggregate. The format is ipv6-address/prefix.

Modes
 Configuration mode

Configuration Statement
 protocols {
 ripng {
 aggregate-address ipv6net
 }
 }

Usage Guidelines
 Use this command for IPv6 address aggregation.
 Use the set form of this command to specify a contiguous block of IPv6 addresses to aggregate.
 Use the delete form of this command to delete an aggregate address.
 Use the show form of this command to display aggregate address configuration settings.
protocols ripng default-information originate
Generates a default route into the RIPng routing domain.

Syntax
set protocols ripng default-information originate
delete protocols ripng default-information originate
show protocols ripng default-information originate

Command Default
A default route into the RIPng routing domain is not generated.

Modes
Configuration mode

Configuration Statement
protocols {
 ripng {
 default-information {
 originate
 }
 }
}

Usage Guidelines
Use the set form of this command to generate a default route into the RIPng routing domain.
Use the delete form of this command to restore the default behavior for default route generation into RIPng; that is, a default route is not generated.
Use the show form of this command to display the default configuration of route generation into RIPng.
protocols ripng default-metric <metric>

Sets the default metric for external routes that are redistributed into RIPng.

Syntax

set protocols ripng default-metric metric
delete protocols ripng default-metric
show protocols ripng default-metric

Command Default

Routes that are imported into RIPng are assigned a metric of 1.

Parameters

metric

Mandatory. A metric assigned to external routes that are imported into RIPng. The metric ranges from 1 through 16. The default metric is 1.

Modes

Configuration mode

Configuration Statement

protocols {
 ripng {
 default-metric metric
 }
}

Usage Guidelines

Use the set form of this command to set the default metric for external routes that are redistributed into RIPng.

Use the delete form of this command to restore the default RIPng metric for external routes that are redistributed into RIPng; that is, routes are assigned a metric of 1.

Use the show form of this command to display the default metric for external routes that are redistributed into RIPng.
protocols ripng log
Enables logging for RIPng.

Syntax
set protocols ripng log { all | events | nsm | packet | rib }
delete protocols ripng log { all | events | nsm | packet | rib }
show protocols ripng log { all | events | nsm | packet | rib }

Command Default
None

Parameters
all
 Enables all RIPng logs.

events
 Enables RIPng events logs.

nsm
 Enables RIPng NSM logs.

packet
 Enables RIPng packet logs.

rib
 Enables RIPng RIB logs.

Modes
Configuration mode

Configuration Statement
protocols {
 ripng {
 log {
 all
 events
 nsm
 packet
 rib
 }
 }
}

Usage Guidelines
Use the set form of this command to enable routing information protocol (RIP)ng logs.
Use the delete form of this command to remove RIPng logs.
Use the **show** form of this command to view RIPng logs.
protocols ripng log packet

Enables logging for RIPng packets.

Syntax

set protocols ripng log packet { all | detail | rcv | send }

delete protocols ripng log packet { all | detail | rcv | send }

show protocols ripng log packet { all | detail | rcv | send }

Command Default
None

Parameters

all

Enables all RIPng packet logs.

detail

Enables only RIPng packet detail logs.

rcv

Enables only RIPng packet receive logs.

send

Enables only RIPng packet send logs.

Modes

Configuration mode

Configuration Statement

protocols {
 ripng {
 log {
 packet {
 all
 detail
 rcv
 send
 }
 }
 }
}

Usage Guidelines

Use the set form of this command to enable routing information protocol (RIP)ng packet logs.

Use the delete form of this command to remove RIPng packet logs.

Use the show form of this command to view RIPng packet logs.
protocols ripng passive-interface <interface-name>

Suppresses updates to RIPng routing on an interface.

Syntax

set protocols ripng passive-interface interface-name
delete protocols ripng passive-interface interface-name
show protocols ripng passive-interface

Command Default

RIPng routing updates are not suppressed.

Parameters

interface-name

The identifier of an interface. Supported interface types are:

- Data plane
- Loopback

For more information about these interface types, refer to Supported Interface Types on page 59.

You can suppress routing updates on more than one RIPng interface by creating multiple protocols ripng passive-interface configuration nodes.

Modes

Configuration mode

Configuration Statement

protocols {
 ripng {
 passive-interface interface
 }
}

Usage Guidelines

Use the set form of this command to suppress updates to RIPng routing on an interface.

Use the delete form of this command to disable the suppression of updates to RIPng routing on an interface.

Use the show form of this command to display the configuration of RIPng route suppression for an interface.
protocols ripng route <ipv6net>
Sets a static route in RIPng.

Syntax

set protocols ripng route ipv6net
delete protocols ripng route ipv6net
show protocols ripng route

Parameters

ipv6net
Mandatory. The IPv6 network address defining the RIPng static route.

Modes

Configuration mode

Configuration Statement

protocols {
 ripng {
 route ipv6net
 }
}

Usage Guidelines

Use this command to set a static route in RIPng.
Use the set form of this command to set a static route in RIPng.
Use the delete form of this command to remove an RIPng static route.
Use the show form of this command to display RIPng static route configuration.
protocols ripng timers garbage-collection <seconds>

Sets the timer for RIPng garbage collection.

Syntax

set protocols ripng timers garbage-collection seconds
delete protocols ripng timers garbage-collection [seconds]
show protocols ripng timers garbage-collection

Command Default

RIPng garbage collection occurs at 120 seconds.

Parameters

seconds

Mandatory. A timer interval in seconds. The interval ranges from 0 through 65535. The default interval is 120.

Modes

Configuration mode

Configuration Statement

protocols {
 ripng {
 timers {
 garbage-collection seconds
 }
 }
}

Usage Guidelines

Use the **set** form of this command to set the timer for RIPng garbage collection. When the timer expires, the system scans for stale RIPng resources and releases them for use.

Use the **delete** form of this command to restore the default timer interval for RIPng garbage collection, which is 120 seconds.

Use the **show** form of this command to display the current timer interval for RIPng garbage collection.
protocols ripng timers timeout <seconds>

Sets the interval for RIPng timeouts.

Syntax

```
set protocols ripng timers timeout seconds
delete protocols ripng timers timeout [ seconds ]
show protocols ripng timers timeout
```

Command Default

RIPng timeouts occur at 180 seconds.

Parameters

```
seconds
```

Mandatory. A timer interval in seconds. The interval ranges from 0 through 65535. The default interval is 180.

Modes

Configuration mode

Configuration Statement

```
protocols {  
  ripng {  
    timers {  
      timeout seconds  
    }  
  }  
}
```

Usage Guidelines

Use the `set` form of this command to set the interval for RIPng timeouts.

Use the `delete` form of this command to restore the default interval for RIPng time-outs, which is 180 seconds.

Use the `show` form of this command to display the current interval for RIPng time-outs.
protocols ripng timers update <seconds>

Sets the timer interval for updates to the RIPng routing table.

Syntax

set protocols ripng timers update seconds
delete protocols ripng timers update [seconds]
show protocols ripng timers update

Command Default

The RIPng routing table is updated every 30 seconds.

Parameters

seconds

Mandatory. An interval, in seconds, at which updates to the RIPng routing table occur. The interval ranges from 0 through 65535. The default interval is 30.

Modes

Configuration mode

Configuration Statement

protocols {
 ripng {
 timers {
 update seconds
 }
 }
}

Usage Guidelines

Use the set form of this command to set the timer interval for updates to the RIPng routing table. When the interval is shorter, the routing information in the tables is more accurate; however, more protocol network traffic occurs.

Use the delete form of this command to restore the default interval for RIPng updates, which is 30 seconds.

Use the show form of this command to display the current interval for RIPng updates.
reset ipv6 ripng route

Resets data in the RIPng routing table.

Syntax

```
reset ipv6 ripng route [ all | bgp | connected | kernel | ospfv6 | ripng | static | ip-address ]
```

Parameters

- **all**
 - Removes all entries from the RIPng routing table.
- **bgp**
 - Removes only BGP routes from the RIPng routing table.
- **connected**
 - Removes entries for connected routes from the RIPng routing table.
- **kernel**
 - Removes kernel entries from the RIPng routing table.
- **ospfv6**
 - Removes only OSPFv6 routes from the RIPng routing table.
- **ripng**
 - Removes only RIPng routes from the RIPng routing table.
- **static**
 - Removes static entries from the RIPng routing table.
- **ip-address**
 - Removes entries that match `ip-address (x:x::x:x/M)`, a destination IPv6 address, from the RIPng routing table.

Modes

Operational mode.

Usage Guidelines

Use the `reset ipv6 ripng route all` command to clear the RIPng routing table.
show ipv6 route ripng

Displays all IPv6 RIPng routes.

Syntax

show ipv6 route ripng

Modes

Operational mode

Usage Guidelines

Use this command to display all RIPng routes that are contained in the RIB.

Examples

The following example shows all RIPng routes from the RIB.

vyatta@vyatta:~$show ipv6 route ripng

R>* 2001:db8:2::/64 [120/2] via fe80::20c:29ff:fed6:816c, dp0s1, 00:43:00
R>* 2001:db8:3::/64 [120/3] via fe80::20c:29ff:fed6:816c, dp0s1, 00:00:03
vyatta@vyatta:~$
show ipv6 ripng
Displays information about RIPng.

Syntax
```
show ipv6 ripng [ interface | status ]
```

Command Default
Displays all information about RIPng.

Parameters
- **interface**
 Optional. Displays information for RIPng interfaces.
- **status**
 Optional. Displays only RIPng protocol status information.

Modes
- Operational mode

Usage Guidelines
Use this command to display information about RIPng.
Examples

The following example lists RIPng information.

```bash
vyatta@vyatta:$ show ipv6 ripng
Codes: R - RIPng, C - connected, S - Static, O - OSPF, B - BGP
Sub-codes:
   (n) - normal, (s) - static, (d) - default, (r) - redistribute,
   (i) - interface, (a/S) - aggregated/Suppressed

<table>
<thead>
<tr>
<th>Network</th>
<th>Next Hop</th>
<th>Via</th>
<th>Metric</th>
<th>Tag</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>C(i) 2001:db8:1::/64</td>
<td>::</td>
<td>self</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>R(n) 2001:db8:2::/64</td>
<td>fe80::20c:29ff:fed6:816c</td>
<td>dp0s1</td>
<td>2</td>
<td>0</td>
<td>02:56</td>
</tr>
<tr>
<td>R(n) 2001:db8:3::/64</td>
<td>fe80::20c:29ff:fed6:816c</td>
<td>dp0s1</td>
<td>3</td>
<td>0</td>
<td>02:56</td>
</tr>
</tbody>
</table>
```

The following example lists RIPng protocol status information.

```bash
vyatta@vyatta:$ show ipv6 ripng status
Routing Protocol is "RIPng"
Sending updates every 30 seconds with +/-50%, next due in 4 seconds
Timeout after 180 seconds, garbage collect after 120 seconds
Outgoing update filter list for all interface is not set
Incoming update filter list for all interface is not set
Default redistribution metric is 1
Redistributing:
   Interface
dp0s1
```
Route Redistribution Commands

- protocols ripng redistribute bgp...42
- protocols ripng redistribute connected...43
- protocols ripng redistribute kernel..44
- protocols ripng redistribute ospfv3...45
- protocols ripng redistribute static...46
protocols ripng redistribute bgp

Redistributes BGP routes into RIPng routing tables.

Syntax

set protocols ripng redistribute bgp [metric metric | route-map map-name]
delete protocols ripng redistribute bgp [metric | route-map]
show protocols ripng redistribute bgp [metric | route-map]

Command Default

BGP routes that are redistributed into RIPng are assigned a routing metric of 1. By default, no route map is applied to redistributed BGP routes.

Parameters

metric

Applies a metric to BGP routes that are imported into RIPng routing tables. The metric ranges from 1 through 16. The default metric is 1.

route-map map-name

Applies a route map to BGP routes that are imported into RIPng routing tables.

Modes

Configuration mode

Configuration Statement

protocols {
 ripng {
 redistribute {
 bgp {
 metric metric
 route-map map-name
 }
 }
 }
}

Usage Guidelines

Use the set form of this command to redistribute BGP routes into RIPng routing tables. You can set the routing metric for or specify a route map to apply to redistributed BGP routes.

Use the delete form of this command to remove the current configuration of BGP route redistribution.

Use the show form of this command to display the current configuration of BGP route redistribution.
protocols ripng redistribute connected
Redistributes directly connected routes into RIPng routing tables.

Syntax

set protocols ripng redistribute connected [metric metric | route-map map-name]
delete protocols ripng redistribute connected [metric | route-map]
show protocols ripng redistribute connected [metric | route-map]

Command Default
Connected routes that are redistributed into RIPng are assigned a routing metric of 1. By default, no route map is applied to redistributed connected routes.

Parameters

metric
Optional. The routing metric to be applied to connected routes being imported into RIPng routing tables. The range is 1 to 16. The default is 1.

map-name
Optional. Applies the specified route map to connected routes being imported into RIPng routing tables.

Modes
Configuration mode

Configuration Statement
protocols {
 ripng {
 redistribute {
 connected {
 metric metric
 route-map map-name
 }
 }
 }
}

Usage Guidelines
Use the set form of this command to redistribute directly connected routes into RIPng routing tables. You can set the routing metric or specify a route map to apply to directly connected BGP routes.
Use the delete form of this command to remove the current configuration of directly connected route redistribution.
Use the show form of this command to display the current configuration of directly connected route redistribution.
protocols ripng redistribute kernel

Redistributes kernel routes into RIPng routing tables.

Syntax

```
set protocols ripng redistribute kernel [ metric metric | route-map map-name ]
delete protocols ripng redistribute kernel [ metric | route-map ]
show protocols ripng redistribute kernel [ metric | route-map ]
```

Command Default

Kernel routes that are redistributed into RIPng are assigned a routing metric of 1. By default, no route map is applied to redistributed kernel routes.

Parameters

- **metric**
 - Optional. The routing metric to be applied to kernel routes being imported into RIPng routing tables. The range is 1 to 16. The default is 1.

- **map-name**
 - Optional. Applies the specified route map to kernel routes being imported into RIPng routing tables.

Modes

Configuration mode

Configuration Statement

```bash
protocols {
  ripng {
    redistribute {
      kernel {
        metric metric
        route-map map-name
      }
    }
  }
}
```

Usage Guidelines

Use the **set** form of this command to redistribute kernel routes into RIPng routing tables. You can set the routing metric for or specify a route map to apply to redistributed kernel routes.

Use the **delete** form of this command to remove the current configuration of kernel route redistribution.

Use the **show** form of this command to display the current configuration of kernel route redistribution.
protocols ripng redistribute ospfv3

Redistributes OSPFv3 routes into RIPng routing tables.

Syntax

```
set protocols ripng redistribute ospfv3 [ metric metric | route-map map-name ]
delete protocols ripng redistribute ospfv3 [ metric | route-map ]
show protocols ripng redistribute ospfv3 [ metric | route-map ]
```

Command Default

OSPFv3 routes that are redistributed into RIPng are assigned a routing metric of 1. By default, no route map is applied to redistributed OSPFv3 routes.

Parameters

- **metric**
 - Optional. The routing metric to be applied to OSPFv3 routes being imported into RIPng routing tables. The range is 1 to 16. The default is 1.

- **map-name**
 - Optional. Applies the specified route map to OSPFv3 routes being imported into RIPng routing tables.

Modes

- Configuration mode

Configuration Statement

```
protocols {
  ripng {
    redistribute {
      ospfv3 {
        metric metric
        route-map map-name
      }
    }
  }
}
```

Usage Guidelines

Use the **set** form of this command to redistribute OSPFv3 routes into RIPng routing tables. You can set the routing metric for or specify a route map to apply to redistributed OSPFv3 routes.

Use the **delete** form of this command to remove the current configuration of OSPFv3 route redistribution.

Use the **show** form of this command to display the current configuration of OSPFv3 route redistribution.
protocols ripng redistribute static
 Redistributes static routes into RIPng routing tables.

Syntax
 set protocols ripng redistribute static [metric metric | route-map map-name]
 delete protocols ripng redistribute static [metric | route-map]
 show protocols ripng redistribute static [metric | route-map]

Command Default
 Static routes that are redistributed into RIPng are assigned a routing metric of 1. By default, no route map is applied to redistributed static routes.

Parameters
 metric
 Optional. The routing metric to be applied to static routes being imported into RIPng routing tables. The range is 1 to 16. The default is 1.
 map-name
 Optional. Applies the specified route map to static routes being imported into RIPng routing tables.

Modes
 Configuration mode

Configuration Statement
 protocols {
 ripng {
 redistribute {
 static {
 metric metric
 route-map map-name
 }
 }
 }
 }

Usage Guidelines
 Use the set form of this command to redistribute static routes into RIPng routing tables. You can set the routing metric for or specify a route map to apply to redistributed static routes.
 Use the delete form of this command to remove the current configuration of static route redistribution.
 Use the show form of this command to display the current configuration of static route redistribution.
Route Filtering Commands

- `protocols ripng distribute-list access-list` ... 48
- `protocols ripng distribute-list interface <interface-name> access-list` 49
- `protocols ripng distribute-list interface <interface-name> prefix-list` 50
- `protocols ripng distribute-list prefix-list` ... 51
protocols ripng distribute-list access-list

Applies an access list to filter inbound or outbound RIPng packets.

Syntax

- `set protocols ripng distribute-list access-list { in in-list | out out-list }`
- `delete protocols ripng distribute-list access-list { in | out }`
- `show protocols ripng distribute-list access-list { in | out }

Parameters

- `in-list`
 Specifies the identifier of a defined access list. The access list filters inbound RIPng packets.
- `out-list`
 Specifies the identifier of a defined access list. The access list filters outbound RIPng packets.

Modes

- Configuration mode

Configuration Statement

```plaintext
protocols {
  ripng {
    distribute-list {
      access-list {
        in in-list
        out out-list
      }
    }
  }
}
```

Usage Guidelines

- Use the `set` form of this command to apply an access list to filter inbound or outbound RIPng packets.
- Use the `delete` form of this command to remove the filtering of RIPng inbound or outbound packets by an access list.
- Use the `show` form of this command to display RIPng access list filtering configuration.
protocols ripng distribute-list interface <interface-name> access-list
Applies an access list to an interface to filter inbound or outbound RIPng packets.

Syntax

set protocols ripng distribute-list interface interface-name access-list { in in-list | out out-list }
delete protocols ripng distribute-list interface interface-name access-list { in | out }
show protocols ripng distribute-list interface interface-name access-list { in | out }

Parameters

interface-name
The identifier of an interface. Supported interface types are:
• Data plane
• Loopback
For more information about these interface types, refer to Supported Interface Types on page 59.
in in-list
Specifies the identifier of a defined access list. The access list applies to the specified interface to filter inbound RIPng packets.
out out-list
Specifies the identifier of a defined access list. The access list applies to the specified interface to filter outbound RIPng packets.

Modes
Configuration mode

Configuration Statement

protocols {
 ripng {
 distribute-list {
 interface interface-name {
 access-list {
 in in-list
 out out-list
 }
 }
 }
 }
}

Usage Guidelines

Use the set form of this command to apply an access list to a specific interface to filter inbound or outbound RIPng packets.
Use the delete form of this command to remove the filtering of RIPng inbound or outbound packets on an interface by an access list.
Use the show form of this command to display RIPng access list filtering configuration for an interface.
protocols ripng distribute-list interface <interface-name> prefix-list

Applies a prefix list to an interface to filter inbound or outbound RIPv2 packets.

Syntax

- set protocols ripng distribute-list interface interface-name prefix-list { in in-list | out out-list }
- delete protocols ripng distribute-list interface interface-name prefix-list { in | out }
- show protocols ripng distribute-list interface interface-name prefix-list { in | out }

Parameters

- **interface-name**
 - The identifier of an interface. Supported interface types are:
 - Data plane
 - Loopback
 - For more information about these interface types, refer to Supported Interface Types on page 59.

- **in in-list**
 - Specifies the identifier of a defined prefix list. The prefix list applies to the specified interface to filter inbound RIPv2 packets.

- **out out-list**
 - Specifies the identifier of a defined prefix list. The prefix list applies to the specified interface to filter outbound RIPv2 packets.

Modes

Configuration mode

Configuration Statement

```plaintext
protocols {
  ripng {
    distribute-list {
      interface interface-name {
        prefix-list {
          in in-list
          out out-list
        }
      }
    }
  }
}
```

Usage Guidelines

Use the `set` form of this command to apply a prefix list to an interface to filter inbound or outbound RIPv2 packets.

Use the `delete` form of this command to remove the filtering of RIPv2 inbound or outbound packets on an interface by a prefix list.

Use the `show` form of this command to display RIPv2 prefix list filtering configuration for an interface.
protocols ripng distribute-list prefix-list

Applies a prefix list to filter inbound or outbound RIPng packets.

Syntax

set protocols ripng distribute-list prefix-list { in in-list | out out-list }
delete protocols ripng distribute-list prefix-list { in | out }
show protocols ripng distribute-list prefix-list { in | out }

Parameters

in in-list
 Specifies the identifier of a defined prefix list. The prefix list filters inbound RIPng packets.
out out-list
 Specifies the identifier of a defined prefix list. The prefix list filters outbound RIPng packets.

Modes

Configuration mode

Configuration Statement

protocols {
 ripng {
 distribute-list {
 prefix-list {
 in in-list
 out out-list
 }
 }
 }
}

Usage Guidelines

Use the set form of this command to apply a prefix list to filter inbound or outbound RIPng packets.
Use the delete form of this command to remove the filtering of RIPng inbound or outbound packets by a prefix list.
Use the show form of this command to display RIPng prefix list filtering configuration.
RIPng Interface Commands

- interfaces <interface> ipv6 ripng enable ... 54
- interfaces <interface> ipv6 ripng metric-offset .. 55
- interfaces <interface> ipv6 ripng split-horizon .. 56
- interfaces <interface> ipv6 ripng neighbor <ip-address> 58
interfaces <interface> ipv6 ripng enable

Enables RIPng on an interface.

Syntax

set interfaces interface ipv6 ripng enable
delete interfaces interface ipv6 ripng enable
show interfaces interface ipv6 ripng

Parameters

interface
Mandatory. A type of interface. For detailed keywords and arguments that can be specified as interface types, refer to Supported Interface Types on page 59.

Modes

Configuration mode

Configuration Statement

interfaces interface {
 ipv6 {
 ripng
 }
}

Usage Guidelines

Use this command to enable RIPng.
Use the set form of this command to enable RIPng on an interface.
Use the delete form of this command to remove all RIPng configuration and disable RIPng on the interface.
Use the show form of this command to display the current RIPng configuration on an interface.
interfaces <interface> ipv6 ripng metric-offset

Sets a metric to add to routes that are received from RIPng on an interface.

Syntax

set interfaces interface ipv6 ripng metric-offset metric
show interfaces interface ipv6 ripng metric-offset

Parameters

interface
Mandatory. A type of interface. For detailed keywords and arguments that can be specified as interface types, refer to Supported Interface Types on page 59.

metric
Mandatory. A metric to be added to the routes over the interface. The metric ranges from 1 through 16.

Modes

Configuration mode

Configuration Statement

interfaces interface {
ipv6 {
ripng {
metric-offset metric
}
}
}

Usage Guidelines

Use this command to set the metric for inbound and outbound routes on an interface that are beyond the normal operation of RIPng.

Use the set form of this command to set a metric to add to routes that are received from RIPng on an interface.

Use the show form of this command to display the current metric that is added to routes that are received from RIPng on an interface.
interfaces <interface> ipv6 ripng split-horizon

Configures split-horizon and split-horizon poison-reverse on an interface that is running RIPng.

Syntax

 set interfaces interface ipv6 ripng split-horizon [disable | poison-reverse]
 show interfaces interface ipv6 ripng split-horizon

Command Default

Split-horizon is enabled.

Parameters

 interface
 Mandatory. A type of interface. For detailed keywords and arguments that can be specified as interface types, refer to Supported Interface Types on page 59.

 disable
 Enables split-horizon poison-reverse on the specified interface.

 poison-reverse
 Enables poison-reverse on the specified interface.

Modes

Configuration mode

Configuration Statement

interfaces interface {
 ipv6 {
 ripng {
 split-horizon {
 disable
 poison-reverse
 }
 }
 }
}

Usage Guidelines

Use this command to disable split-horizon or enable split-horizon poison-reverse on an interface that is running RIPng.

Split-horizon is a stability feature that reduces the possibility of network loops, particularly when links become disconnected. It stops an interface from including in its network updates to any routes that it learned from that interface. Split-horizon is effective at preventing loops between routers that are directly connected to each other, and it speeds convergence when network conditions change. Split-horizon is the default setting in RIPng.

Poison-reverse is a variation of split-horizon. When an interface that has poison-reverse enabled detects a link that is down, it increases the metric for that route to 16 and propagates that information in its next update. Because 15 is the largest number of hops that can be reached on a RIPng network, increasing the metric to 16 renders the route unreachable as far as downstream
RIPng routers are concerned. This is called "poisoning" the route. Poison-reverse is useful for propagating information about bad routes to routers that are downstream but not immediate neighbors, where split-horizon is ineffective.

When this option is enabled, the router includes the route in announcements to the neighbor from which it was learned. When this option is disabled, the router omits the route from announcements to the neighbor from which it was learned.

Use the set form of this command to configure split-horizon and split-horizon poison-reverse on an interface that is running RIPng.

Use the show form of this command to display the current configuration of split-horizon.
interfaces <interface> ipv6 ripng neighbor <ip-address>

Configures the IPv6 link-local address of a neighbor for RIPng.

Syntax

set interfaces interface ipv6 ripng neighbor ip-address
show interface interface ipv6 ripng neighbor

Parameters

interface
A type of interface. For detailed keywords and arguments that can be specified as interface types, refer to Supported Interface Types on page 59.

ip-address
The IPv6 link-local address of a neighbor.

Modes

Configuration mode.

Configuration Statement

interfaces interface {
 address address {
 ipv6 {
 ripng {
 neighbor ip-address
 }
 }
 }
}

Usage Guidelines

Use the set form of this command to configure the IPv6 link-local address of a neighbor for RIPng.

Use the show form of this command to display the IPv6 link-local address of the neighbor.
Supported Interface Types

The following table shows the syntax and parameters of supported interface types. Depending on the command, some of these types may not apply.

<table>
<thead>
<tr>
<th>Interface Type</th>
<th>Syntax</th>
<th>Parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bridge</td>
<td>bridge</td>
<td>brx: The name of a bridge group. The name ranges from br0 through br999.</td>
</tr>
</tbody>
</table>
| Data plane | dataplane interface-name | interface-name: The name of a data plane interface. Following are the supported formats of the interface name:
 - dp:pxp:z — The name of a data plane interface, where
 - px specifies the data plane identifier (ID). Currently, only dp0 is supported.
 - py specifies a physical or virtual PCI slot index (for example, pl29).
 - pz specifies a port index (for example, p1). For example, dp0p1p2, dp0p160p1, and dp0p192p1.
 - dp:emy — The name of a data plane interface on a LAN-on-motherboard (LOM) device that does not have a PCI slot, where emy specifies an embedded network interface number (typically, a small number). For example, dp0em3.
 - dp:xsy — The name of a data plane interface on a device that is installed on a virtual PCI slot, where xsy specifies an embedded network interface number (typically, a small number). For example, dp0s2.
 - dp:PnP:p:z — The name of a data plane interface on a device that is installed on a secondary PCI bus, where Pn specifies the bus number. You can use this format to name data plane interfaces on large physical devices with multiple PCI buses. For these devices, it is possible to have network interface cards installed on different buses with these cards having the same slot ID. The value of n must be an integer greater than 0. For example, dp0P1p162p1 and dp0P2p162p1. |
| Data plane vif | dataplane interface-name vif
 vif-id [v1an vlan-id] | interface-name: Refer to the preceding description.
 vif-id: A virtual interface ID. The ID ranges from 1 through 4094.
 vlan-id: The VLAN ID of a virtual interface. The ID ranges from 1 through 4094. |
| Loopback | loopback | n: The name of a loopback interface, where n ranges from 1 through 99999. |
| OpenVPN | openvpn | vtunx: The identifier of an OpenVPN interface. The identifier ranges from vtun0 through vtunx where x is a nonnegative integer. |
| Tunnel | tunnel | tunx: The identifier of a tunnel interface you are defining. The identifier ranges from tun0 through tunx, where x is a nonnegative integer.
 or
 tunnel tunx parameters |
<table>
<thead>
<tr>
<th>Interface Type</th>
<th>Syntax</th>
<th>Parameters</th>
</tr>
</thead>
</table>
| Virtual tunnel | `vti vtix` | `vtix`: The identifier of a virtual tunnel interface you are defining. The identifier ranges from `vti0` through `vtix`, where `x` is a nonnegative integer.
 Note: This interface does not support IPv6. |
| VRRP | `parent-interface vrrp vrrp-group group` | `parent-interface`: The type and identifier of a parent interface; for example, data plane `dp0p1p2` or bridge `br999`.
 `group`: A VRRP group identifier.
 The name of a VRRP interface is not specified. The system internally constructs the interface name from the parent interface identifier plus the VRRP group number; for example, `dp0p1p2v99`.
 Note that VRRP interfaces support the same feature set as does the parent interface. |
List of Acronyms

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACL</td>
<td>access control list</td>
</tr>
<tr>
<td>ADSL</td>
<td>Asymmetric Digital Subscriber Line</td>
</tr>
<tr>
<td>AH</td>
<td>Authentication Header</td>
</tr>
<tr>
<td>AMI</td>
<td>Amazon Machine Image</td>
</tr>
<tr>
<td>API</td>
<td>Application Programming Interface</td>
</tr>
<tr>
<td>AS</td>
<td>autonomous system</td>
</tr>
<tr>
<td>ARP</td>
<td>Address Resolution Protocol</td>
</tr>
<tr>
<td>AWS</td>
<td>Amazon Web Services</td>
</tr>
<tr>
<td>BGP</td>
<td>Border Gateway Protocol</td>
</tr>
<tr>
<td>BIOS</td>
<td>Basic Input Output System</td>
</tr>
<tr>
<td>BPDU</td>
<td>Bridge Protocol Data Unit</td>
</tr>
<tr>
<td>CA</td>
<td>certificate authority</td>
</tr>
<tr>
<td>CCMP</td>
<td>AES in counter mode with CBC-MAC</td>
</tr>
<tr>
<td>CHAP</td>
<td>Challenge Handshake Authentication Protocol</td>
</tr>
<tr>
<td>CLI</td>
<td>command-line interface</td>
</tr>
<tr>
<td>DDNS</td>
<td>dynamic DNS</td>
</tr>
<tr>
<td>DHCP</td>
<td>Dynamic Host Configuration Protocol</td>
</tr>
<tr>
<td>DHCPv6</td>
<td>Dynamic Host Configuration Protocol version 6</td>
</tr>
<tr>
<td>DLCI</td>
<td>data-link connection identifier</td>
</tr>
<tr>
<td>DMI</td>
<td>desktop management interface</td>
</tr>
<tr>
<td>DMVPN</td>
<td>dynamic multipoint VPN</td>
</tr>
<tr>
<td>DMZ</td>
<td>demilitarized zone</td>
</tr>
<tr>
<td>DN</td>
<td>distinguished name</td>
</tr>
<tr>
<td>DNS</td>
<td>Domain Name System</td>
</tr>
<tr>
<td>DSCP</td>
<td>Differentiated Services Code Point</td>
</tr>
<tr>
<td>DSL</td>
<td>Digital Subscriber Line</td>
</tr>
<tr>
<td>eBGP</td>
<td>external BGP</td>
</tr>
<tr>
<td>EBS</td>
<td>Amazon Elastic Block Storage</td>
</tr>
<tr>
<td>EC2</td>
<td>Amazon Elastic Compute Cloud</td>
</tr>
<tr>
<td>EGP</td>
<td>Exterior Gateway Protocol</td>
</tr>
<tr>
<td>ECMP</td>
<td>equal-cost multipath</td>
</tr>
<tr>
<td>ESP</td>
<td>Encapsulating Security Payload</td>
</tr>
<tr>
<td>FIB</td>
<td>Forwarding Information Base</td>
</tr>
<tr>
<td>FTP</td>
<td>File Transfer Protocol</td>
</tr>
<tr>
<td>GRE</td>
<td>Generic Routing Encapsulation</td>
</tr>
<tr>
<td>HDLC</td>
<td>High-Level Data Link Control</td>
</tr>
<tr>
<td>I/O</td>
<td>Input/Output</td>
</tr>
<tr>
<td>ICMP</td>
<td>Internet Control Message Protocol</td>
</tr>
<tr>
<td>Acronym</td>
<td>Description</td>
</tr>
<tr>
<td>---------</td>
<td>-------------</td>
</tr>
<tr>
<td>IDS</td>
<td>Intrusion Detection System</td>
</tr>
<tr>
<td>IEEE</td>
<td>Institute of Electrical and Electronics Engineers</td>
</tr>
<tr>
<td>IGMP</td>
<td>Internet Group Management Protocol</td>
</tr>
<tr>
<td>IGP</td>
<td>Interior Gateway Protocol</td>
</tr>
<tr>
<td>IPS</td>
<td>Intrusion Protection System</td>
</tr>
<tr>
<td>IKE</td>
<td>Internet Key Exchange</td>
</tr>
<tr>
<td>IP</td>
<td>Internet Protocol</td>
</tr>
<tr>
<td>IPOA</td>
<td>IP over ATM</td>
</tr>
<tr>
<td>IPsec</td>
<td>IP Security</td>
</tr>
<tr>
<td>IPv4</td>
<td>IP Version 4</td>
</tr>
<tr>
<td>IPv6</td>
<td>IP Version 6</td>
</tr>
<tr>
<td>ISAKMP</td>
<td>Internet Security Association and Key Management Protocol</td>
</tr>
<tr>
<td>ISM</td>
<td>Internet Standard Multicast</td>
</tr>
<tr>
<td>ISP</td>
<td>Internet Service Provider</td>
</tr>
<tr>
<td>KVM</td>
<td>Kernel-Based Virtual Machine</td>
</tr>
<tr>
<td>L2TP</td>
<td>Layer 2 Tunneling Protocol</td>
</tr>
<tr>
<td>LACP</td>
<td>Link Aggregation Control Protocol</td>
</tr>
<tr>
<td>LAN</td>
<td>local area network</td>
</tr>
<tr>
<td>LDAP</td>
<td>Lightweight Directory Access Protocol</td>
</tr>
<tr>
<td>LLDP</td>
<td>Link Layer Discovery Protocol</td>
</tr>
<tr>
<td>MAC</td>
<td>medium access control</td>
</tr>
<tr>
<td>mGRE</td>
<td>multipoint GRE</td>
</tr>
<tr>
<td>MIB</td>
<td>Management Information Base</td>
</tr>
<tr>
<td>MLD</td>
<td>Multicast Listener Discovery</td>
</tr>
<tr>
<td>MLPPP</td>
<td>multilink PPP</td>
</tr>
<tr>
<td>MRRU</td>
<td>maximum received reconstructed unit</td>
</tr>
<tr>
<td>MTU</td>
<td>maximum transmission unit</td>
</tr>
<tr>
<td>NAT</td>
<td>Network Address Translation</td>
</tr>
<tr>
<td>NBMA</td>
<td>Non-Broadcast Multi-Access</td>
</tr>
<tr>
<td>ND</td>
<td>Neighbor Discovery</td>
</tr>
<tr>
<td>NHRP</td>
<td>Next Hop Resolution Protocol</td>
</tr>
<tr>
<td>NIC</td>
<td>network interface card</td>
</tr>
<tr>
<td>NTP</td>
<td>Network Time Protocol</td>
</tr>
<tr>
<td>OSPF</td>
<td>Open Shortest Path First</td>
</tr>
<tr>
<td>OSPFv2</td>
<td>OSPF Version 2</td>
</tr>
<tr>
<td>OSPFv3</td>
<td>OSPF Version 3</td>
</tr>
<tr>
<td>PAM</td>
<td>Pluggable Authentication Module</td>
</tr>
<tr>
<td>PAP</td>
<td>Password Authentication Protocol</td>
</tr>
<tr>
<td>PAT</td>
<td>Port Address Translation</td>
</tr>
<tr>
<td>PCI</td>
<td>peripheral component interconnect</td>
</tr>
<tr>
<td>PIM</td>
<td>Protocol Independent Multicast</td>
</tr>
<tr>
<td>PIM-DM</td>
<td>PIM Dense Mode</td>
</tr>
<tr>
<td>Acronym</td>
<td>Description</td>
</tr>
<tr>
<td>----------</td>
<td>--</td>
</tr>
<tr>
<td>PIM-SM</td>
<td>PIM Sparse Mode</td>
</tr>
<tr>
<td>PKI</td>
<td>Public Key Infrastructure</td>
</tr>
<tr>
<td>PPP</td>
<td>Point-to-Point Protocol</td>
</tr>
<tr>
<td>PPPoA</td>
<td>PPP over ATM</td>
</tr>
<tr>
<td>PPPoE</td>
<td>PPP over Ethernet</td>
</tr>
<tr>
<td>PPTP</td>
<td>Point-to-Point Tunneling Protocol</td>
</tr>
<tr>
<td>PTMU</td>
<td>Path Maximum Transfer Unit</td>
</tr>
<tr>
<td>PVC</td>
<td>permanent virtual circuit</td>
</tr>
<tr>
<td>QoS</td>
<td>quality of service</td>
</tr>
<tr>
<td>RADIUS</td>
<td>Remote Authentication Dial-In User Service</td>
</tr>
<tr>
<td>RHEL</td>
<td>Red Hat Enterprise Linux</td>
</tr>
<tr>
<td>RIB</td>
<td>Routing Information Base</td>
</tr>
<tr>
<td>RIP</td>
<td>Routing Information Protocol</td>
</tr>
<tr>
<td>RIPng</td>
<td>RIP next generation</td>
</tr>
<tr>
<td>RP</td>
<td>Rendezvous Point</td>
</tr>
<tr>
<td>RPF</td>
<td>Reverse Path Forwarding</td>
</tr>
<tr>
<td>RSA</td>
<td>Rivest, Shamir, and Adleman</td>
</tr>
<tr>
<td>Rx</td>
<td>receive</td>
</tr>
<tr>
<td>S3</td>
<td>Amazon Simple Storage Service</td>
</tr>
<tr>
<td>SLAAC</td>
<td>Stateless Address Auto-Configuration</td>
</tr>
<tr>
<td>SNMP</td>
<td>Simple Network Management Protocol</td>
</tr>
<tr>
<td>SMTP</td>
<td>Simple Mail Transfer Protocol</td>
</tr>
<tr>
<td>SONET</td>
<td>Synchronous Optical Network</td>
</tr>
<tr>
<td>SPT</td>
<td>Shortest Path Tree</td>
</tr>
<tr>
<td>SSH</td>
<td>Secure Shell</td>
</tr>
<tr>
<td>SSID</td>
<td>Service Set Identifier</td>
</tr>
<tr>
<td>SSM</td>
<td>Source-Specific Multicast</td>
</tr>
<tr>
<td>STP</td>
<td>Spanning Tree Protocol</td>
</tr>
<tr>
<td>TACACS+</td>
<td>Terminal Access Controller Access Control System Plus</td>
</tr>
<tr>
<td>TBF</td>
<td>Token Bucket Filter</td>
</tr>
<tr>
<td>TCP</td>
<td>Transmission Control Protocol</td>
</tr>
<tr>
<td>TKIP</td>
<td>Temporal Key Integrity Protocol</td>
</tr>
<tr>
<td>ToS</td>
<td>Type of Service</td>
</tr>
<tr>
<td>TSS</td>
<td>TCP Maximum Segment Size</td>
</tr>
<tr>
<td>Tx</td>
<td>transmit</td>
</tr>
<tr>
<td>UDP</td>
<td>User Datagram Protocol</td>
</tr>
<tr>
<td>VHD</td>
<td>virtual hard disk</td>
</tr>
<tr>
<td>vif</td>
<td>virtual interface</td>
</tr>
<tr>
<td>VLAN</td>
<td>virtual LAN</td>
</tr>
<tr>
<td>VPC</td>
<td>Amazon virtual private cloud</td>
</tr>
<tr>
<td>VPN</td>
<td>virtual private network</td>
</tr>
<tr>
<td>VRRP</td>
<td>Virtual Router Redundancy Protocol</td>
</tr>
<tr>
<td>Acronym</td>
<td>Description</td>
</tr>
<tr>
<td>---------</td>
<td>---------------------------</td>
</tr>
<tr>
<td>WAN</td>
<td>wide area network</td>
</tr>
<tr>
<td>WAP</td>
<td>wireless access point</td>
</tr>
<tr>
<td>WPA</td>
<td>Wired Protected Access</td>
</tr>
</tbody>
</table>